

On the topology and index of minimal surfaces

<u>Davi Maximo</u> * ,

*Stanford University

Abstract

In this talk we show that for an immersed two-sided minimal surface in \mathbb{R}^3 , there is a lower bound on the index depending on the genus and number of ends. Using this, we show the nonexistence of an embedded minimal surface in \mathbb{R}^3 , of index 2, as conjectured by Choe. Moreover, we show that the index of a immersed two-sided minimal surface with embedded ends is bounded from above and below by a linear function of the total curvature of the surface. This is a joint work with Otis Chodosh.